EPIGENETICA DOS LINFOMAS DO TIPO NÃO-HODGKIM: REVISÃO DA LITERATURA

Thiago Mantello Bianco, Douglas Reis Abdalla

Resumo


Os linfomas são tumores sólidos do sistema imune e os Linfomas do tipo não-Hodgkim (NHLs) é composto por um grupo heterogêneo de neoplasias linfoproliferativa, que são dividas de acordo com seu precursor celular e que afetam linfócitos B, linfócitos T e células Natural Killer (NK), sendo que os Linfomas de células B são os mais frequentes na população. Durante o desenvolvimento celular é necessário à presença de uma maquinaria epigenética para um desenvolvimento equilibrado destas células. No entanto, nos linfomas pode-se observar a presença uma infinidade de defeitos nos mecanismos de metilação, modificação das histonas e expressão de RNA não codificados (ncRNA) que levam a formação de um epigenoma aberrante. Assim o objetivo deste trabalho foi fazer uma revisão sistemática da literatura sobre os possiveis mecanismos epigenéticos envolvidos com o desenvolvimento dos NHLs que afetam os linfócitos B. O resultados mostram que a evolução da genetica tem permitdo identificar alterações em genes que codificam moléculas associadas a indução de marcas epigeneticas, apesar das inúmeras descobertas sobre os mecanismos epigenéticos, ainda há uma grande necessidade de se compreender mais sobre as vias de sinalizações e da atuação das maquinarias enzimaticas que promovam as marcas epigenéticas, assim como a interação dinamica entre as vias envolvidas na gênese dos Linfomas não-Hodgkin, para que possamos a partir dessas investigações buscar terapias epigenéticas que possam auxiliar o tratamentos de pacientes com estas neoplasias. Desta maneira conclui-se que om todos esses avanços, já temos disponiveis algumas terapias que tem como alvo essas moleculas levando a uma diminuição de uma epigenetica aberrante. Acreditamos, que as novas descobertas nas areas da genomica e epigenomica seja possivel o desenvolvimento de novas drogas epigeneticas que consigam regular melhor esses mecanismos epigenéticos alterados.

Palavras-chave


Epigenética; Linfoma não-Hodgkins; Linfomas de Células B

Texto completo:

PDF

Referências


AMARA, K.; ZIADI, S.; HACHANA, M.; et al. DNA methyltransferase DNMT3b protein overexpression as a prognostic factor in patients with diffuse large B-cell lymphomas. Cancer science, v. 101, n. 7, p. 1722–30, 2010.

CERCHIETTI, L. C.; HATZI, K.; CALDAS-LOPES, E.; et al. BCL6 repression of EP300 in human diffuse large B cell lymphoma cells provides a basis for rational combinatorial therapy. Journal of Clinical Investigation, v. 120, n. 12, p. 4569–4582, 2010.

CHALLEN, G.A; SUN, D; JEONG, M et al. Dnmt3a is essential for hematopoietic stem cell differentiation. Nat Genet., v. 44, n. 1, p. 23-31, 2012.

CHEN, T., DENT, S.Y.R. AND. NIH Public Access. Nature Reviews Genetics, v. 15, n. 2, p. 93–106, 2014.

CROCE, C. M. Causes and consequences of microRNA dysregulation in cancer. Nature Reviews Genetics, v. 10, n. 10, p. 704–714, 2009.

ENJUANES, A.; FERNÀNDEZ, V.; HERNÁNDEZ, L.; et al. Identification of methylated genes associated with aggressive clinicopathological features in mantle cell lymphoma. PloS one, v. 6, n. 5, p. e19736, 2011.

ENJUANNES, A., ALBERO, R., CLOT, G. et al. Genome-wide methylation analyses identify a subset of mantle cell lymphoma with a high number of methylated CpGs and aggressive clinicopathological features. International Journal of Cancer, v. 133, n. 12, p. 2852–2863, 2013.

ESTELLER, M. Cancer epigenomics : DNA methylomes and histone-modification maps. nature, v. 8, n. April, p. 286–298, 2007.

ESTELLER, M. Epigenetics in Cancer. The New England of Medicne, v.358, n. 11, p.1148-1159 , 2008.

ESTELLER, M. Review Aberrant Epigenetic Landscape in Cancer : How Cellular Identity Goes Awry. Cell, n. 19, p. 698 - 711 ,2010.

FRAGA, M. F.; BALLESTAR, E.; PAZ, M. F.; et al. Epigenetic differences arise during the lifetime of monozygotic twins. Proceedings of the National Academy of Sciences, v. 102, n. 30, p. 10–15, 2005.

GOSWAMI, R. S.; ATENAFU, E. G.; XUAN, Y.; et al. MicroRNA signature obtained from the comparison of aggressive with indolent non-Hodgkin lymphomas: potential prognostic value in mantle-cell lymphoma. Journal of clinical oncology : official journal of the American Society of Clinical Oncology, v. 31, n. 23, p. 2903–11, 2013.

GUAN, H.; XIE, L.; LEITHÄUSER, F.; et al. KLF4 is a tumor suppressor in B-cell non-Hodgkin lymphoma and in classic Hodgkin lymphoma. Blood, v. 116, n. 9, p. 1469–78, 2010.

HOLLIDAY, R. The Inheritance of Epigenetic Defects. Science, v. 238, n. 11, p. 163–238, 1987.

HUNTZINGER, E., & IZAURRALDE, E. Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nature Rev. Genet., n. 12, p. 99–110, 2011.

INSTITUTO NACIONAL DE CANCER JOSÉ ALENCAR SILVA. Linfoma Não Hodgkin. Disponivel em: http://www2.INCA.gov.br/wps/wcs/connect /site/home/linfoma_nao_hodgkin. Acessado em 26/11/2014

IQBAL, J.; SHEN, Y.; LIU, Y.; et al. Genome-wide miRNA profiling of mantle cell lymphoma reveals a distinct subgroup with poor prognosis. Blood, v. 119, n. 21, p. 4939–4949, 2014.

JIANG, D.; AGUIAR, R. C. T. MicroRNA-155 controls RB phosphorylation in normal and malignant B lymphocytes via the noncanonical TGF- b 1 / SMAD5 signaling module. Blood, v. 123, n. 1, p. 86–94, 2014.

JIANG, Y.; HATZI, K.; SHAKNOVICH, R. Mechanisms of epigenetic deregulation in lymphoid neoplasms. Blood: Epigenetics and Hematology, v. 121, n. 21, p. 4271–4279, 2013.

KANDURI, M.; SANDER, B.; NTOUFA, S.; et al. A key role for EZH2 in epigenetic silencing of HOX genes in mantle cell lymphoma. Epigenetics : official journal of the DNA Methylation Society, v. 8, n. 12, p. 1280–8, 2013.

KRAJNOVIĆ, M.; RADOJKOVIĆ, M.; DAVIDOVIĆ, R.; DIMITRIJEVIĆ, B.; KRTOLICA, K. Prognostic significance of epigenetic inactivation of p16, p15, MGMT and DAPK genes in follicular lymphoma. Medical oncology (Northwood, London, England), v. 30, n. 1, p. 441, 2013.

LI, H.; KAMINSKI, M. S.; LI, Y.; et al. Mutations in linker histone genes HIST1H1 B , C , D , and E ; OCT2 ( POU2F2 ); IRF8 ; and ARID1A underlying the pathogenesis of follicular lymphoma. Blood, v. 123, n. 10, p. 1487–1499, 2014.

MAJER, C. R.; JIN, L.; SCOTT, M. P.; et al. A687V EZH2 is a gain-of-function mutation found in lymphoma patients. FEBS letters, v. 586, n. 19, p. 3448–51, 2012

MINJU, H.A., NARRY, V. K. Regulation of microRNA biogenesis. Nature Review, v. 15, p. 509-524, 2014.

MIZUNO, S.-I. TAKAHITO CHIJIWA. TAKASHI OKAMURA. et al. Expression of DNA methyltransferases DNMT1, 3A, and 3B in normal hematopoiesis and in acute and chronic myelogenous leukemia. Blood, v. 97, n. 5, p. 1172–1179, 2001.

MORIN, R. D.; JOHNSON, N. A; SEVERSON, T. M.; et al. Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nature genetics, v. 42, n. 2, p. 181–5, 2010.

O’RIAIN, C.; O’SHEA, D. M.; YANG, Y.; et al. Array-based DNA methylation profiling in follicular lymphoma. Leukemia, v. 23, n. 10, p. 1858–66, 2009.

PASQUALUCCI, L.; DOMINGUEZ-SOLA, D.; CHIARENZA, A.; et al. Inactivating mutations of acetyltransferase genes in B-cell lymphoma. Nature, v. 471, n. 7337, p. 189–95, 2011.

REBECCA SIEGEL, ELIZABETH WARD, OTIS BRAWLEY, A. J. Cancer Statistics , 2011 The Impact of Eliminating Socioeconomic and Racial Disparities on Premature Cancer Deaths CA: a cancer journal for clinicians. , v. 61, n. 4, p. 212–236, 2011.

SATO, M.; MOCHIZUKI, H.; GOTO-KOSHINO, Y.; et al. Hypermethylation of the death-associated protein kinase CpG island in canine B-cell lymphoid tumors. Veterinary immunology and immunopathology, v. 161, n. 3-4, p. 222–31, 2014.

SHAKNOVICH, R.; CERCHIETTI, L.; TSIKITAS, L.; et al. germinal center B-cell differentiation DNA methyltransferase 1 and DNA methylation patterning contribute to germinal center B-cell differentiation. Blood, v. 118, n. 23, p. 3559–3569, 2014.

SHANKLAND, K. R.; ARMITAGE, J. O.; HANCOCK, B. W. Non-Hodgkin lymphoma. Lancet, v. 380, n. 9844, p. 848–57, 2012.

SNEERINGER, C. J.; SCOTT, M. P.; KUNTZ, K. W.; et al. Coordinated activities of wild-type plus mutant EZH2 drive tumor-associated hypertrimethylation of lysine 27 on histone H3 (H3K27) in human B-cell lymphomas. Proceedings of the National Academy of Sciences of the United States of America, v. 107, n. 49, p. 20980–5, 2010.

TESHIMA, K., NARA, M., WATANABE, A., et al. Dysregulation of BMI1 and microRNA-16 collaborate to enhance an anti-apoptotic potential in the side population of refractory mantle cell. Oncogene, v. 24, n. 17, p. 2191-2203, 2013

TZANNINIS, J.; PHILIPPOU, A.; KOUTSILIERIS, M. Epigenetic regulation on gene expression induced by physical exercise. Journal Musculoskeletic Neuronal Interact, v. 13, n. 2, p. 133–146, 2013.

VELICGUTINA, I., SHAKNOVICH, R., GENG, H., et al. EZH2-mediated epigenetic silencing in germinal center B cells contributes to proliferation and lymphomagenesis. Blood.; v. 116, n. 24, p. 5247-5255, 2010.

VISSER, H.P.J.,GUNSTER, M.J., KLUIN-NELEMANS, H.C., et al. The Polycomb group protein EZH2 is upregulated in proliferating, cultured human mantle cell lymphoma. British Journal of Haematology, n.112, p. 950-958, 2001.

WANG, K.; XU, Z.; WANG, N.; XU, T.; ZHU, M. MicroRNA and gene networks in human diffuse large B-cell lymphoma. Oncology letters, v. 8, n. 5, p. 2225–2232, 2014.

WANG, W., CORRIGAN-CUMMINS, M., HUDSON, J., et al. MicroRNA profiling of follicular lymphoma identifies microRNAs related to cell proliferation and tumor response. Haematologica, v. 97(4), p. 586-594, 2012.

YIM, R. L.-H.; KWONG, Y. L.; WONG, K. Y.; CHIM, C. S. DNA Methylation of Tumor Suppressive miRNAs in Non-Hodgkin’s Lymphomas. Frontiers in genetics, v. 3, n. 1, p. 233, 2012.

ZHU, J.; EMERSON, S. G. Hematopoietic cytokines , transcription factors and lineage commitment. Oncogene, v. 21, n. 1, p. 3295–3313, 2002.


Apontamentos

  • Não há apontamentos.


Direitos autorais 2017 JORNAL DE CIÊNCIAS BIOMÉDICAS E SAÚDE